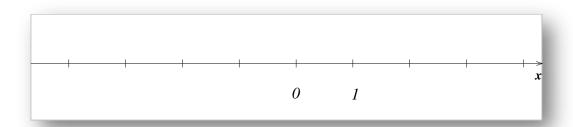
Nombres relatifs

1. Nombres relatifs et repérage sur une droite graduée

Définition 1


- Un nombre positif est un nombre supérieur ou égal ·······

 Il s'écrit avec le signe « ····· » placé devant, ou ················
- Un nombre relatif est un nombre positif ou un nombre ······

Définition 2

Une droite graduée est une droite sur laquelle on fixe une origine, un sens et une unité de longueur.

Exemple

Propriété

Sur une droite graduée, chaque point est repéré par un nombre relatif unique appelé de ce point.

Exemple Sur la droite graduée ci-dessous :

- A est le point d'abscisse ·······
- ··· ··· est l'abscisse du point B.

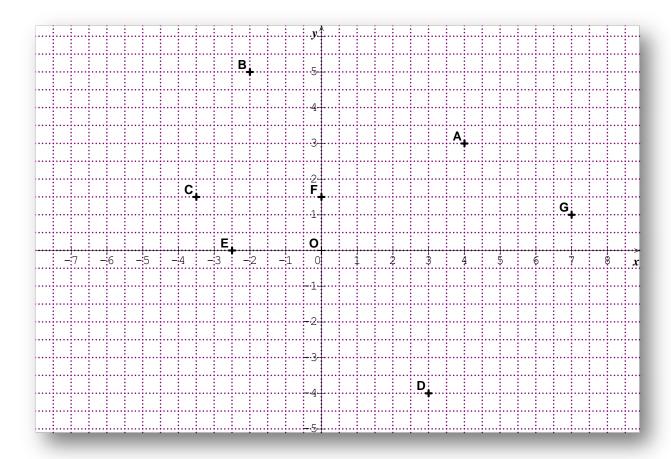
On remarque que le point A d'abscisse 3,8 et le point D d'abscisse -3,8 sont \cdots par rapport à l'origine O.

On dit que les nombres relatifs -3.8 et 3.8 sont \cdots et que leur **distance à zéro** est égale à \cdots

Définition
Deux nombres relatifs sont opposés lorsqu'ils ont des signes contraires mais la même

Exemple Compléter le tableau suivant :

Nombre relatif	5	-9,1	-55	+12,7
Nombre relatif opposé				



2. Repérage dans le plan

Définition

Un repère orthogonal du plan est constitué de deux droites graduées (axes) de même origine **0** et perpendiculaires.

Exemple

Définition – Propriété

Dans un repère, chaque point est repéré par deux nombres relatifs appelés les ······· de ce point.

- Le premier nombre, lu sur l'axe horizontal, est l'......
- le second nombre, lu sur l'axe vertical, est l'......

Exemples

Dans l'exemple ci-dessous, le point A a pour abscisse \cdots et pour ordonnée

 \cdots . On note $A(\cdots; \cdots)$

De la même façon, on a:

